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Abstract. The Accelerated Pseudo-Transient (APT) method is a matrix-free approach used to solve partial differential equa-

tions (PDEs), characterized by its reliance on local operations, which makes it highly suitable for parallelization. With the

advent of the memory-wall phenomenon around 2005, where memory access speed overtook floating-point operations as the

bottleneck in high-performance computing, the APT method has gained prominence as a powerful tool for tackling various

PDEs in geosciences. Recent advancements have demonstrated the APT method’s computational efficiency, particularly when5

applied to quasi-static nonlinear problems using Graphical Processing Units (GPUs). This manuscript presents a comprehen-

sive analysis of the APT method, focusing on its application to quasi-static elastic, viscoelastic, and coupled hydro-mechanical

problems, specifically those governed by quasi-static Biot’s poroelastic equations, across 1D, 2D, and 3D domains. We sys-

tematically investigate the optimal numerical parameters required to achieve rapid convergence, offering valuable insights into

the method’s applicability and efficiency for a range of physical models. Our findings are validated against analytical solutions,10

underscoring the robustness and accuracy of the APT method in both homogeneous and heterogeneous media. We explore

the influence of boundary conditions, non-linearities, and coupling on the optimal convergence parameters, highlighting the

method’s adaptability in addressing complex and realistic scenarios. To demonstrate the flexibility of the APT method, we ap-

ply it to the nonlinear mechanical problem of strain localization using a poro-elasto-viscoplastic rheological model, achieving

extremely high resolutions - 10,0002 voxels in 2D and 5123 voxels in 3D - that, to our knowledge, have not been previously15

explored for such models. Our study contributes significantly to the field by providing a robust framework for the effective im-

plementation of the APT method in solving challenging geophysical problems. Importantly, the results presented in this paper

are fully reproducible, with Matlab, symbolic Maple scripts, and CUDA C codes made available in a permanent repository.

1 Introduction

The Accelerated Pseudo-Transient (APT) method represents a powerful tool in computational science, combining efficiency,20

scalability, ease of implementation, and a strong theoretical foundation rooted in wave physics. The main idea of the APT

method is that instead of solving the original partial differential equation (PDE), a modified PDE with added inertial terms and

attenuation is solved in iterative fashion until the inertial terms vanish. In other words, the solution of the original PDE is an

attractor of the transient PDE with inertia.
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The APT method is an efficient iterative approach for solving PDEs without relying on matrix storage. This method is25

versatile, applicable to both linear and nonlinear equations, and distinguishes itself with several key attributes. (i) APT is a

matrix-free method, enabling the solution of large-scale 3D problems without the overhead of matrix storage. (ii) leveraging

only local operations, APT naturally lends itself to parallelization, making it well-suited for modern computing architectures.

(iii) its structure facilitates efficient implementation on Graphical Processing Units (GPUs), capitalizing on their ability to

handle parallel tasks effectively. (iv), APT method aligns closely with the physics of wave phenomena, offering a robust30

theoretical framework for rigorous understanding and application.

One of the first iterative methods to solve PDEs was presented by Richardson (1911). Probably one of the first iterative

methods that features second-order iterations and can be called as APT was proposed in 1950s by Frankel (1950); Riley

(1954) for solving elliptic equations (see also Young (1972) ). The pseudo-transient method is also known as a dynamic-

relaxation (DR) method that was used by Otter (1965); Otter et al. (1966). Interestingly, the APT method was also applied35

in other branches of science, e.g., in areas related to optimization problems (Polyak, 1964). In geosciences, the APT method

was introduced as the Fast Lagrangian Analysis of Continua (FLAC) algorithm by Cundall (1976), it was applied to solve

non-linear problems and instabilities (Poliakov et al., 1993, 1994). The APT method was recently applied to model large 3D

geophysical problems: coupled two-phase flow physics represented by solitary porosity waves (Räss et al., 2019), reaction-

driven porosity waves (Omlin et al., 2017) and thermomechanical ice deformation (Räss et al., 2020). The APT method was40

applied to model focused fluid flow by Wang et al. (2022). Furthermore, Wang et al. (2022) investigated the physics-based

principles underlying the APT method. A compaction-driven fluid flow and plasticity within porous media were investigated

numerically by Alkhimenkov et al. (2024a). A numerical approach based on GPUs to model the strain localization in 2D and

3D of a (visco)-hypoelastic-perfectly plastic medium was developed by Alkhimenkov et al. (2024b).

The efficiency of the APT method strongly depends on the choice of the numerical parameters. For simple equations, such45

parameters can be derived analytically. This was done for elliptic equations by analyzing a damped wave equation (DWE) (Cox

and Zuazua, 1994), since the solution of elliptic equations is an attractor of DWE. In optimization problems the APT method

is also known as PDE acceleration framework (Calder and Yezzi, 2019; Benyamin et al., 2020). A comprehensive study that

provides the optimal values of numerical parameters of the APT method for various problems is provided by Räss et al. (2022).

Such problems include diffusion–reaction equations, transient diffusion, incompressible viscous shear-driven Couette flow,50

incompressible viscous and visco-elastic Stokes equation. Remarkably, the APT method can be applied to other classes of

problems, that are described in the present paper.

The present study provides a comprehensive study of the application of the APT method to compressible quasi-static elas-

tic and visco-elastic equations and to coupled hydro-mechanical problems represented by the quasi-static Biot’s poroelastic

equations.55

The novelties of this paper are summarized as follows:

1. A set of optimal parameters tailored for compressible quasi-static elastic and viscoelastic equations is presented.

2. Validation against analytical solutions is conducted to verify the accuracy of the APT solutions of quasi-static elasticity

equations.
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3. A new set of optimal parameters specifically designed for coupled hydro-mechanical problems, represented by the quasi-60

static Biot’s poroelastic equations is introduced.

4. Applications of the APT method are presented for ultra-high resolution simulations of 10,0002 voxels in 2D and 5123

voxels in 3D for poro-elastoplastic equations.

2 Mathematical formulation: quasi-static elasticity equations

2.1 General form65

Consider a domain V in a three-dimensional Euclidean space E3 bounded by a regular surface ∂V . The equilibrium equation

(conservation of linear momentum under the conditions of equilibrium and neglecting body forces) is (Landau and Lifshitz,

1959; Nemat-Nasser and Hori, 2013)

∇∇∇ ·σσσ = 0, (1)

where σσσ is stress tensor, · is the dot product,∇∇∇ is the del operator and∇∇∇· is the divergence operator. The del operator,∇∇∇, is a70

vectorial differential operator, denoted by Li and Wang (2008); Nemat-Nasser and Hori (2013):∇∇∇≡ ∂iei ≡ ∂ei/∂xi, where ei

are the base vectors and xi are the coordinates. The stress tensor σσσ can be decomposed into pressure (minus the mean stress),

p, and deviatoric stress tensor, τττ , such that σσσ =−pI2 +τττ , where I2 is the second order identity tensor. In a rate formulation,

the constitutive equation (the stress-rate-velocity relation) is

∂σσσ(v)
∂t

= C :
∂εεε

∂t
, (2)75

∂εεε

∂t
=

1
2
(
∇∇∇⊗ v + (∇∇∇⊗ v)T) , (3)

where C is the 4-th rank stiffness tensor (with components Cijkl), “:" is the double-dot product, ⊗ is the tensor product, the

superscript “T" denotes transpose, ∂εεε/∂t is the strain-rate tensor, v is the velocity field. For the elasticity problems, we consider

two different tasks: (i) loading/unloading of an elastic body and (ii) calculation of effective elastic properties.80

2.2 1D elasticity equations

For simplicity, we consider 1D elasticity equations as the following system:





∂σxx

∂t
= (K + 4

3G)
∂vx

∂x

0 =
∂σxx

∂x
,

(4)
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where σxx is the component of the stress tensor, vx is the velocity, K is the bulk modulus, G is the shear modulus. Note that

the system of equations (4) is a 1D version of the full system of elasticity equations (1)-(3).85

2.3 The pseudo-transient method

The pseudo-transient(PT) method method is used to solve the system of equation (4) (Frankel, 1950; Räss et al., 2022). The

pseudo-transient method is matrix-free and builds on a transient physics analogy to establish a stationary solution. The main

idea is that the solution of a quasi-static equation (stationary process), usually described by an elliptic PDE, is represented by

an attractor of a transient process described by parabolic or hyperbolic PDEs.90

2.3.1 The first-order PT method

Let us write the first and the simplest version of the pseudo-transient method:





∂σxx

∂t
= (K + 4

3G)
∂vx

∂x

0 =
∂σxx

∂x
−µvx,

(5)

where µ is an attenuation parameter. The system of equations (5) represents a diffusive-type physical behavior. The system is

solved once the term µvx converges to zero with a certain precision (e.g., 10−12). The convergence of this type of equation is95

∼ n2
x, where nx is the number of grid cells in x-direction. Such convergence rate makes this method impractical for large 3D

problems, therefore, this method is not analyzed here. An interested reader can find more details in Räss et al. (2022).

2.3.2 The accelerated pseudo-transient method: damping scheme 1

Now, let us consider a more advanced version of the pseudo-transient which we will call the accelerated pseudo-transient

method (APT):100





∂σxx

∂t
= (K + 4

3G)
∂vx

∂x

ρ̃
∂vx

∂t̃
=
∂σxx

∂x
−µvx,

(6)

where t̃ is a “pseudo" time and µ is an attenuation parameter. The system (6) is solved once the terms ∂vx/∂t̃ and µvx converge

to zero with a certain precision (e.g., 10−12). The advantage of this system of equation (6) over (5) is that now the system of

equation (6) describes propagating waves (i.e., hyperbolic), and, therefore, the convergence rate is ∼ nx (compare to ∼ n2
x in

the first-order PT method (5)) (see Räss et al. (2022) for details). This method has been successfully applied to solve coupled105

two-phase flow physics represented by solitary porosity waves (Räss et al., 2019).
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2.3.3 The accelerated pseudo-transient method: damping scheme 2

Here we report a modification of the APT method. The solution of the quasi-static elasticity equations can be achieved in

two steps. (i) Inertial terms are added into the equations stress, (ii) these terms are treated as a Maxwell rheology (a viscous

damper). The quasi-static elasticity equations (5) can then be re-written with the pseudo-time t̃,110





1

H̃

∂σxx

∂t̃
+

1
H

σxx− σ̂xx

∆t
=
∂vx

∂x

ρ̃
∂vx

∂t̃
=
∂σxx

∂x
,

(7)

where σ̂xx is the stress field at the previous physical time step and C1111 = H̃ ≡H =K + 4
3 G is the P-wave modulus. The

system (7) has to be solved for the case of elastic loading/unloading where the stress σ̂xx is non-zero from the previous physical

time step.

The system of equations (7) can be further simplified since the stress σ̂ does not change inside the loop over “pseudo" time115

t̃:




1

H̃

∂σxx

∂t̃
+

1
H

σxx

∆t
=
∂vx

∂x

ρ̃
∂vx

∂t̃
=
∂σxx

∂x
.

(8)

In the system (7) (or (8)), ρ̃ is a to be determined numerical parameter. For the analysis of the optimal numerical parameters,

the systems of equations (7) and (8) are equivalent to each other since the quantity σ̂xx is constant during the iterations over

the “pseudo" time t̃.120

The APT version of expression (7) (or (8)) where the stress tenor is decomposed into pressure and deviatoric stress tensor

provided in Appendix A. A discrete version of the system (8) is provided in Appendix B. A Matlab routine to solve the system

(8) is presented in Appendix C.

The system of equations (8) is hyperbolic and corresponds to a wave propagation in a dissipative medium. The numerical

parameters in the system (8) determine the attenuation of propagating waves. Our target is to solve elasticity equations that are125

quasi-static. Therefore, the goal is to find optimal values of the numerical parameters that corresponds to the fastest attenuation

of propagating waves. More precisely, once the “pseudo" time derivatives (∂σxx/∂t̃, ∂vx/∂t̃ ) in the system (8) disappear, the

resulting solution of the quasi-static equations is found. In other words, the solution to quasi-static equations in an attractor of

the system of equations (8) at large “pseudo"-time-scales. For a particular (optimal) choice of the numerical parameters, the

attractor solution can be achieved faster than by using non-optimal values of the numerical parameters. In the best scenario,130

the number of iterations nI needed to converge to the target solution is nI ∼ nx, and more precisely nI = knx, where usually

k is in a range of k ∈ [5;50] (the low and upper bounds provided must be considered as an approximation). In other words, the
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wave travels several times throughout the whole domain before the corresponding updates of the time derivatives attenuate to

a desired precision. If non-optimal parameters are used, the solution may not converge for a long computational time.

Let us describe some basic features of the system of equations (8). The “numerical" primary or P-wave velocity can be135

calculated as:

Ṽp =

√
H̃

ρ̃
. (9)

The Courant–Friedrichs–Lewy (CFL) condition for the system of equation (8) suggest that (Alkhimenkov et al., 2021a)

∆t̃≤ ∆x

Ṽp

or ∆t̃=
C̃∆x

Ṽp

, (10)

where C̃ ≤ 1. Note that the system of equations (8) is identical to the damped linear wave equation and the CFL condition (10)140

is just a lower bound (Alkhimenkov et al., 2021a). It is important to mention that we do not need to know the optimal values

of all the numerical parameters separately. Instead, the following combinations are needed: H̃∆t̃ and ∆t̃/ρ̃.

Let us analyze the system of equations (8). First, we perform a dispersion analysis. A solution of traveling waves in dissipa-

tive media can be written as

f(t̃,x) = exp

[
(γ Ṽp t̃+πωxi)

Lx

]
, (11)145

where γ is the amplitude, ω = 2πf is the angular frequency (f is the frequency), i is the imaginary unit and in our description

exp[·]≡ e(·). The amplification matrix F of this system is a 2× 2 matrix:

F =




γ∆x
Lx

−3iπ∆x
7St

−7∆xStπ
3L2

x

∆x(St + γ)
Lx



, (12)

where the dimensionless parameter, the Strouhal number, St, is expressed as

St =
Lx

Ṽp ∆t
. (13)150

The discriminant D of the matrix (12) is

D =
(
γ2 + Stγ+π2

)(∆x
Lx

)2

(14)

Setting D = 0 and solving for γ, we get two roots:

γ1 =−St
2

+

√
−4π2 + St2

2
, (15)
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155

γ2 =−St
2
−
√
−4π2 + St2

2
, (16)

The minimum of real part of the roots γ1 and γ2 control the exponential decay rate of the solution (Räss et al., 2022), therefore,

we are interested in the minimum of these values. This minimum reaches maximal value when the discriminant is zero:

−4π2 + St2 = 0. (17)

The resulting solution for St has two roots: 2π and −2π. Taking the positive root we get160

St = Stopt = 2π, (18)

which is the optimal value of the numerical parameter St that corresponds to the fastest attenuation of propagating waves.

There is only one numerical parameter that controls the dissipation and convergence to the target solution of the quasi-static

equations: the Strouhal number, St, which is a purely numerical parameter in our analysis and can be chosen arbitrary. For

St≪ 1 the system of equations (8) behaves as purely hyperbolic without the stiff source term; in other words, propagating165

waves do not attenuate (especially when St→ 0). Contrary, for St≫ 1 the system of equations (8) behaves as hyperbolic

with the stiff source term, that dominates; therefore, the system of equations (8) behaves as a diffusion process and attenuate

very slowly. The optimal choice of the Strouhal number, St, is between these two limits: St = Stopt = 2π as it is shown by

expression (18).

Let us do some transformations with expression (13). Our goal is to separate the numerical combination ∆t̃/ρ̃ on the left170

hand side and the other variables on the right hand side:

1 =
Lx

St Ṽp ∆t
⇐⇒ 1 =

Lx

√
ρ̃

St
√
H̃∆t

√
ρ̃∆t̃√
ρ̃∆t̃

⇐⇒ ∆t̃
ρ̃

=
Lx∆t̃

St
√
H̃
√
ρ̃∆t

Ṽp

Ṽp

, (19)

and continue

∆t̃
ρ̃

=
Ṽp ∆t̃Lx

StH̃∆t
. (20)

By using expression (10), we evaluate that Ṽp ∆t̃= C̃∆x, therefore, equation (20) can be rewritten as175

∆t̃
ρ̃

=
C̃∆xLx

StH̃∆t
. (21)

In expression (21), all the parameters on the right hand side are known, thus ∆t̃/ρ̃ can be evaluated. Now let us create an

expression for the second numerical combination, H̃∆t̃. For that we employ the following transformations:

1 =
Ṽ 2

p ∆t̃2

Ṽ 2
p ∆t̃2

⇐⇒ Ṽ 2
p ρ̃∆t̃2

H̃∆t̃2
⇐⇒ H̃∆t̃= (Ṽp ∆t̃)2

(
∆t̃
ρ̃

)−1

, (22)

Note that Ṽp ∆t̃ and ∆t̃/ρ̃ are already defined above, therefore, it is straightforward to calculate H̃∆t̃. Therefore, the system180

of equations (7) (or (8)) or its discrete version (B1) can be solved.
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Figure 1. Panel (a): Convergence rate in a homogeneous elastic medium: numerical and analytical results as a function of the dimensionless

parameter St. Panel (b): Numerical results for velocity and stress fields in the homogeneous medium for the two damping schemes. Upper

panel corresponds to the velocity field, middle panel shows the stress field considering damping scheme 2 and lower panel shows the stress

field considering damping scheme 1.

2.3.4 Numerical experiment 1: convergence rate in a homogeneous medium

Figure 1 shows the numerical and analytical results for the system of equations (8). The numerical results correspond to the

solution with different St numbers until the update of the “pseudo-time" derivatives becomes less than 10−9. The analytical

result corresponds to the analytical solution of the dispersion relations as a function of St. It can be seen that the analytical and185

numerical results are in excellent agreement (Figure 1) that validates the proposed approach.

2.3.5 Numerical experiment 2: effective properties of a homogeneous medium

Let us consider a 1D numerical domain with Lx = 1, which is discretized into nx = 1000 grid cells. The material parameters

are K =G= 1 and ∆t= 1. For this experiment, a velocity boundary conditions are applied by prescribing vx(n= 1) = 1 and

vx(n= nx) = 0, where n is a grid cell number in a 1D domain (vx(n= 1) = 1 means that the velocity vx = 1 at the first grid190

cell (n= 1) which corresponds to the left corner of the 1D domain Lx). All other parameters and initial conditions are set to

zero.

Figure 1b shows the velocity field (panel a) and the amplitudes of the stress field for the two damping schemes (scheme 1,

where µ= π, and scheme 2). Since the medium is homogeneous, the effective elastic parameters can be calculated exactly:

H∗ =K + 4/3G= 7/3. Numerically, the effective elastic parameters are calculated from the discrete values for the APT195

method:

H∗ =
∑nx

i=1[σxx]i∑nx
i=1[∂ux/∂x]i

, (23)

where ux = vx∆t. After 5nx iterations in “pseudo-time", both damping strategies provide us with similar results: the accuracy

is ∂vx/∂t̃= 10−13 for the damping scheme 1 and ∂vx/∂t̃= 10−14 for the damping scheme 2.
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Figure 2. Panel (a): Numerical results: convergence rate in a heterogeneous medium for the damping scheme 2 as a function of St. Panel (b):

Numerical results for velocity and stress fields in a layered (heterogeneous) medium for the two damping schemes. Upper panel corresponds

to variations of bulk modulus K (the same as variations in the shear modulus G), middle panel shows the velocity field considering damping

schemes 1 and 2. Lower panel shows the spatial derivative of the velocity field considering damping schemes 1 and 2.

2.3.6 Numerical experiment 3: convergence rate in a heterogeneous medium200

Now, let us consider a heterogeneous medium in 1D represented by layers of different elastic properties. There are ten layers

with the properties K1 =G1 = 1 and K2 =G2 = 0.05. Figure 2 shows numerical results for the system of equations (8). The

numerical results correspond to the solution as a function of St until the update of the “pseudo-time" derivatives becomes

withing the range 10−9. It can be seen that the optimal value for of St that is valid in homogeneous medium is not valid here

for a heterogeneous medium. Instead, a special scaling is needed of St with a parameter A which is defined below.205

2.3.7 Numerical experiment 4: effective properties of a heterogeneous medium

We perform numerical experiment considering the two damping schemes: damping schemes 1 with µ= π and damping

schemes 2 as a function of St. By running a set of numerical simulations with different optimal parameters, we found that

the following re-scaling of Stopt via parameter A provides the best fast convergence rate

Sth
opt =A ·Stopt, (24)210

where A is a minimum of the elastic moduli of the softest material divided by volume fraction ϕ:

A=min(K2,G2)/ϕ. (25)

Figure Figure 2 shows the distribution of elastic moduli (panel a), the velocity field and the spatial derivative of the velocity

field for damping schemes 1 and 2. After 5nx iterations in “pseudo" time, damping strategies provide us with the following

9
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results: the accuracy is (2.5 · 10−4)% for the damping scheme 2 and 6.15% for the damping scheme 1. This experiment shows215

that for practical applications in heterogeneous media, damping scheme 2 provides us with a faster convergence and more

accurate results than the damping scheme 1. Note that the definition of A in equation (25) is valid for the specific parameters

of the medium considered here and is not universal.

3 Mathematical formulation: viscoelasticity

Now, let us consider viscoelastic equations. The system of equations (4) can be re-written for calculation of effective viscoelas-220

tic properties as




1
K

∂p

∂t
=−∂vx

∂x

1
2G

∂τxx

∂t
+
τxx

2µs
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)

0 =
∂(−p+ τxx)

∂x
,

(26)

where µs is the (physical) viscosity of the solid material.

3.1 Naive APT scheme

The advantage of this naive APT scheme is that there are minimal modifications to the original formulation of the APT method225

for elasticity equations presented in the previous sections. The system of equations (26) can be re-written as the APT scheme

2:




1

K̃

∂p

∂t̃
+

1
K

p− p̂
∆t

=−∂vx

∂x

1

2G̃

∂τxx

∂t̃
+

1
2G

τxx− τ̂xx

∆t
+
τxx

2µs
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)

ρ̃
∂vx

∂t̃
=−∂σxx

∂x
,

(27)

where

∆t̃
ρ̃

=
Ṽp ∆t̃Lx

StHve
, (28)230

and H̃ve is defined as

Hve =
(

1
(K + 4

3G)∆t
+

1
µs

)−1

. (29)
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Figure 3. Convergence rate in a homogeneous viscoelastic medium: numerical and analytical results as a function of the dimensionless

parameter St.

In other words, in the viscoelastic scenario we replaced “elastic" modulus H by the viscoelastic one H̃ve represented by

equation (29). All other numerical parameters remains the same as in single-phase elasticity equation. The resulting solution

for St has three roots. Let us assume that K =G= µs. The positive root is235

St = Stopt = 11.469G+ 4.915, (30)

which is the optimal value of the numerical parameter St that corresponds to the fastest attenuation of propagating waves. If

G= 1, then

St = Stopt = 11.469G+ 4.915 = 16.38. (31)

A discrete version of the system (27) is provided in Appendix D. A similarity with the analysis proposed by Räss et al. (2022)240

is provided in the discussion section. Note that the optimal value of Stopt must be re-evaluated for the specific parameters of

the medium.

3.2 Elegant APT scheme

Let us simplify the scheme (27) by re-arranging terms and removing quantities that are constant during the iterations over t̃:




1

K̃

∂p

∂t̃
+

1
K

p

∆t
=−∂vx

∂x

1

2G̃

∂τxx

∂t̃
+
τxx

2

(
1

G∆t
+

1
µs

)
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)

ρ̃
∂vx

∂t̃
=−∂σxx

∂x
.

(32)245
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Further simplifications leads to the following system:




1

K̃

∂p

∂t̃
+

1
K

p

∆t
=−∂vx

∂x

1

2G̃

∂τxx

∂t̃
+
τxx

2
1
Gve =

(
∂vx

∂x
− 1

3
∂vx

∂x

)

ρ̃
∂vx

∂t̃
=−∂σxx

∂x
,

(33)

where

Gve =
(

1
G∆t

+
1
µs

)−1

(34)

is the apparent “viscoelastic" shear modulus. Note that (e.g., assuming Gve =G) the present system (33) becomes identical250

to the system (A4) (or (8) ) which corresponds to the elasticity equations. Therefore, all the analysis presented for elasticity

equations in the previous sections can be applied to the viscoelastic equations. If K =Gve = 1, then

Stopt = 2π, (35)

which is the same value as in the case of the elasticity equations.

4 Mathematical formulation: coupled hydro-mechanics — quasi-static poroelasticity255

The first order velocity-stress system of Biot’s equations in 1D can be written as (Biot, 1962)



∂p̄

∂t
∂pf

∂t


=−Ku




1 B

B
B

α







∂vs
x

∂x
∂qD

x

∂x


 , (36)

∂τxx

∂t
= 2Gu

(
∂vx

∂x
− 1

3
∂vx

∂x

)
(37)

and260



0

0


=




∂(−p+ τxx)
∂x

ηf

k
qD
x +

∂pf

∂x


 , (38)

The list of symbols is given in Table 1. From the general principles of thermodynamic, the matrices of coefficients in

expression (36) must be positive definite. For simplicity, expressions (36) and (37) can be combined, leading to



∂σ̄xx

∂t

−∂pf

∂t


=



Ku + 4

3Gu KuB

KuB
KuB

α







∂vs
x

∂x
∂qD

x

∂x


 , (39)
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Table 1. List of Symbols

Symbol Meaning

σs,σf solid and fluid stress

σ̄ = (1−ϕ)σs + ϕσf , total stress

ps,pf solid and fluid pressure

p̄ = (1−ϕ)ps + ϕpf , total pressure

τ̄xx total deviatoric stress

vs,vf solid and fluid velocity

qD = ϕ(vf − vs), Darcy velocity

ρs,ρf solid and fluid density

ρt = (1−ϕ)ρs + ϕρf , total density

Ks,Kf elastic solid and fluid bulk modulus

Gs,Gd = Gu elastic solid, drained and undrained shear modulus

Kd,Ku elastic drained and undrained bulk modulus

ηf fluid shear viscosity

k medium permeability

ϕ medium porosity

α Biot-Willis coefficient

B Skempton coefficient
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where σ̄xx =−p̄+ τ̄xx. For an isotropic material saturated with a single fluid, in which the solid frame consists of a single265

isotropic mineral, the Biot-Willis coefficient is

α= 1− Kd

Ks
(40)

and the Skempton coefficient, B, is

B =
1/Kd− 1/Ks

1/Kd− 1/Ks +ϕ(1/Kf − 1/Ks)
. (41)

Other useful parameters include the undrained bulk modulus, Ku,270

Ku =Kd (1−αB)−1 ≡Kd +α2M, (42)

and the fluid storage coefficient, M ,

M =KuB/α. (43)

Equaition (42) is known as Gassmann’s equation for fluid-saturated bulk modulus (Gassmann, 1951; Alkhimenkov, 2023).

4.1 APT method for the quasi-static Biot’s poroelastic equations275

Let us write the APT method (scheme 2) for the quasi-static Biot’s poroelastic equations (36)-(38):



1

K̃1

∂p̄

∂t̃

1

K̃2

∂pf

∂t̃


+

1
Ku




p̄− ˆ̄p
∆t

pf − p̂f

∆t


=−




1 B

B
B

α







∂vs

∂x
∂qD

∂x


 , (44)

where ˆ̄p and p̂f are the total and fluid pressures at the previous physical time step, K̃1 = K̃2 =Ku. For the total deviatoric

stress the corresponding equation is

1

2G̃1

∂τxx

∂t̃
+

1
2Gu

τxx− τ̂xx

∆t
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)
, (45)280

where τ̂xx is the total stress deviator at the previous physical time step and G̃1 =Gu . The system of equation (38) is re-written

as


ρ̃t 0

0 ρ̃a







∂vs
i

∂t̃

−∂q
D
i

∂t̃


=




∂(−p+ τxx)
∂x

ηf

k
qD
i +

∂pf

∂x


 , (46)

where ρ̃t and ρ̃a are to be determined numerical parameters. A discrete form of the system of equations (44)-(46) is presented

in Appendix E. In summary, we need the following combinations of the numerical parameters to effectively solve the system of285

equations (44)-(46): K̃1∆t̃, K̃2∆t̃, G̃u∆t̃, ∆t̃/ρ̃t and ∆t̃/ρ̃a. A dispersion analysis of equations (44)-(46) leads to the system
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of 5 equations. Without the loss of generality, we analyze the APT method of the expressions (39) and (38) which corresponds

to the system of 4 equations in the dispersion analysis.

The “numerical" primary or P-wave velocity of the system of equations (44)-(46) varies as a function of I2, which is a

non-dimensional parameter:290

I2 =
ηf

k
ρ̃aτ

∗, (47)

where τ∗ is a characteristic time. For details on the non-dimensional analysis of these equations we refer to Alkhimenkov et al.

(2021b). The CFL condition for the system of equation (44)-(46) suggest that (Alkhimenkov et al., 2021a)

∆t̃≤ ∆x

Ṽ HF
p

or ∆t̃=
C̃∆x

Ṽ HF
p

, (48)

where Ṽ HF
p is the “numerical" P-wave velocity at high frequencies and C̃ ≤ 1. Note that Ṽ HF

p > Ṽ LF
p , where the latter is the295

“numerical" P-wave velocity at low frequencies. Since the exact expression for Ṽ HF
p is cumbersome, we can modify the CFL

condition (48) as

∆t̃=
C̃∆x

Ṽ LF
p

, (49)

where

Ṽ LF
p =

√
K̃1 + 4

3 G̃1

ρ̃
=

√
Ku + 4

3Gu

ρ̃
=

√
Hu

ρ̃
, (50)300

where Hu =Ku + 4
3Gu is the undrained P-wave modulus.

4.1.1 The choice of the numerical parameters

The analysis here is similar to that one for a single-phase media. From the stability analysis (49), we evaluate that

Ṽ LF
p ∆t̃= C̃∆x. (51)

Let us introduce a dimensionless parameter, the Strouhal number (St) which is expressed as305

St =
Lx

Ṽ LF
p ∆t

. (52)

By analogy with expression (19), we write the formula for the first numerical combination:

∆t̃
ρ̃t

=
Ṽ LF

p ∆t̃Lx

StHu ∆t
. (53)

The second numerical combination is

G̃1∆t̃=
(Ṽ LF

p ∆t̃)2

(r+ 4
3 )

(
∆t̃
ρ̃t

)−1

, (54)310
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where r =Ku/Gu. Note that Ṽ LF
p ∆t̃ and ∆t̃/ρ̃t are already defined above, therefore, it is straightforward to calculate G̃1∆t̃.

Calculation of K̃1∆t̃ is also straightforward: K̃1 ∆t̃= r G̃1 ∆t̃. For the last combination ∆t̃/ρ̃a, we explore the discrete system

of equations and find that

∆t̃
ρ̃a

=
∆t̃
ρ̃t

ηf

k
. (55)

Now, the system of equations (44)-(46) can be solved.315

In order to find the optimal values of St, we perform the same dispersion analysis as for a single phase media. A solution of

traveling waves in dissipative media is

f(t̃,x) = exp

[
(γ Ṽ LF

p t̃+πωxi)
Lx

]
, (56)

where γ is the amplitude, ω = 2πf is the angular frequency (f is the frequency), i is the imaginary unit and in our descrip-

tion exp[·]≡ e(·). A dispersion analysis of the system of equations (39) and (38) leads to a 4× 4 amplification matrix. The320

discriminant of this matrix has four roots. The optimal value of St that corresponds to the fastest attenuation of propagating

waves depends on the parameter I2. Let us consider two end-member scenarios for values of I2, which are explored in the next

section.

4.1.2 APT method for I2 ≫ 1

Figure 4a shows the numerical and analytical results for the system of equations (44)-(46) for I2 = 1000. The numerical results325

correspond to the solution with different St numbers until the update of the “pseudo-time" derivatives becomes less than 10−11.

The analytical result corresponds to the analytical solution of the dispersion relations as a function of St. It can be seen that the

analytical and numerical results are in excellent agreement (Figure 4a) that validates the proposed approach. Here Stopt is

St = Stopt ≈ 2π. (57)

4.1.3 APT method for I2 ≪ 1330

Figure 4b shows the numerical and analytical results for the system of equations (44)-(46) for I2 = 0.001. The numerical

results correspond to the solution with different St numbers until the update of the “pseudo-time" derivatives becomes less

than 10−11. The analytical result corresponds to the analytical solution of the dispersion relations as a function of St. It can be

seen that the analytical and numerical results are in a good agreement (Figure 4b) that validates the proposed approach. Here

Stopt is335

St = Stopt ≈ 2.9. (58)

Figure 5 shows the analytical results for the system of equations (44)-(46) as a function of the dimensionless parameter St

and I2 (by varying ηf/k only). Note that the optimal value of St depends on the value I2.
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Figure 4. Panel (a): Convergence rate in a homogeneous poroelastic medium for I2 = 1000: numerical and analytical results as a function of

the dimensionless parameter St. Panel (b): Convergence rate in a homogeneous poroelastic medium for I2 = 0.001: numerical and analytical

results as a function of the dimensionless parameter St.

Figure 5. Convergence rate in a homogeneous poroelastic medium as a two-dimensional plot: analytical results as a function of the dimen-

sionless parameter St and I2. The two white circles correspond to the values of St obtained via expressions (57) and (58).
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4.1.4 Approximation: reduced order equations

To find the optimal values of optimal parameters for the system of equations (44)-(46) a solution of 5-th order (or 4-th order)340

polynomial is required. However, if we neglect the coupling in the stress-strain relation, we arrive to a 4-th order (consider

only the 4-th order polynomial for simplicity) polynomial where the roots can be easily separated: two roots are the same as

for single-phase elastic media and the other two roots are more complicated and belong to Darcy’s law.

The discriminant D of the matrix amplification matrix that corresponds to expressions (39) and (38) is

D =
3

14StI2 + 6
[((14StI2)/3 +2)γ2 + (14/3St2I2 + 2St+ 2)γ+St(π2I2 + 2)]·

·(π2 +Stγ+ γ2). (59)345

Setting D = 0 and solving for γ, we get 4 roots. Two of them correspond to the term (π2 +Stγ+ γ2) and are the same as for

single-phase media:

γ1 =−St
2

+

√
−4π2 + St2

2
, (60)

γ2 =−St
2
−
√
−4π2 + St2

2
, (61)350

We are interested when the discriminant is zero: −4π2 + St2 = 0. The resulting solution for St has two roots: 2π and −2π.

Taking the positive root we get

St = Stopt = 2π, (62)

which is the optimal value of the numerical parameter St that corresponds to the fastest attenuation of propagating waves for

I2 ≫ 1.355

The two other roots are are cumbersome. However, a precise analytical evaluation is possible for any value of I2. The optimal

parameters for the system of equations (44)-(46) for I2 ≪ 1 is different from 2π as can be seen in a 2D plot (Figure 5):

St = Stopt ≈ 2.9. (63)

In summary, for practical purposes there is not need to always solve a 4-th (or 5-th) order polynomial for each set of input

parameters of the quasi-static Biot’s poroelastic equations. In some cases, an average of two parameters can be taken360

St = Stopt ≈ (2π+ 2.9)/2≈ 4.596. (64)

4.1.5 2D and 3D numerical simulations

The accuracy of the proposed Stopt ≈ 2.9 is illustrated numerically in 2D (Figure 6a-b) and in 3D (Figure 6c-d). It can be seen

that the results presented here for 1D need some calibration to be applied to 2D and 3D simulations. Note that the numerical

parameters are sensitive to boundary and initial conditions. Therefore, some test must be performed for each numerical setup.365
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Figure 6. Panel (a): Convergence rate in a homogeneous poroelastic medium for I2 = 100: numerical result as a function of the dimension-

less parameter St. Panel (b): Convergence rate in a homogeneous poroelastic medium for I2 = 0.01: numerical result as a function of the

dimensionless parameter St. Panel (c): Convergence rate in a homogeneous poroelastic medium for I2 = 100: numerical result as a function

of the dimensionless parameter St. Panel (d): Convergence rate in a homogeneous poroelastic medium for I2 = 0.01: numerical result as a

function of the dimensionless parameter St.
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5 Applications: Strain Localization in Poro-Elastoplastic Media

The purpose of this section is to demonstrate the applicability of the APT method for ultra-high resolution simulations with het-

erogeneous initial conditions. We address the nonlinear mechanical problem of strain localization in both 2D and 3D contexts,

employing an elasto-viscoplastic rheological model. This model is grounded in a hypoelastic-based constitutive framework

that accommodates the simulation of large strains. The modeling process follows the formulation of incremental constitu-370

tive equations, ensuring the objectivity of the rate fields. In this study, we utilize the Jaumann-Zaremba rate to manage the

time-dependent fields.

5.1 Plasticity Implementation

The plasticity model adheres to a consistent poro-elasto-viscoplastic framework, with the yield function defined as

F (τ,pe) =
√
J2−Ape−Bc− ηvpλ̇, (65)375

where ηvp represents the viscosity of the damper, pe = p̄−pf is the effective pressure. The yield function specified by equation

(65) is rate-dependent Duretz et al. (2019). The plastic potential Q is expressed as

Q(τ,pe) =
√
J2−Cpe. (66)

Here, the constants A, B, and C are defined as A= sin(ϕ), B = cos(ϕ), and C = sin(ψ), where ϕ denotes the internal friction

angle, and ψ ≤ ϕ is the dilation angle (with ψ = 0 for simplicity in this case).380

In the numerical solver, plasticity is implemented through the following steps: (1) Compute the components of the trial

deviatoric stresses τ̄ trial
ij . (2) Using these components, calculate the trial second invariant of the deviatoric stresses, J trial

2 . (3)

Evaluate F trial using the expression

F trial =
√
J trial

2 − (Ape +Bc) . (67)

When the material remains in the plastic regime, the components of the trial deviatoric stresses, τ̄ trial
ij , are re-scaled according385

to

τ̄new
ij = τ̄ trial

ij

(
1− F trial∆tGu√

J2(∆tGu + ηvp)

)
, (68)

This re-scaling procedure occurs within the pseudo-transient iteration loop, and the process repeats until the components of

the updated trial deviatoric stresses, τ̄new
ij , satisfy the condition F trial = 0, and no further re-scaling is needed. This approach

is equivalent to the standard formulation involving the plastic multiplier.390

5.2 2D Results: Ultra-High Resolution Simulations

In this set of simulations, pure shear kinematics are imposed at the boundaries of the domain, corresponding to compression

along the x-axis and extension along the y-axis. The model is initialized with pre-stresses of τ̄xx = 0.0180, τ̄yy =−0.0180, and
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Figure 7. Geometry of the 2D simulation domain: a circular pressure anomaly is located at the center of the model. The resolution is

N = 10,2392 grid cells.

τ̄xy = 0, while the fluid pressure pf is set to zero, and the cohesion c is defined as 0.0101. The total pressure in the background

material is p̄= 0.018, with a circular anomaly located at the center of the model where the pressure is reduced to p̄= 0.005395

(Figure 7). The radius of this anomaly is 1/8 of the domain size. The simulation is performed over 14 loading increments.

The poroelastic properties of the background material are: α= 0.2958, B = 0.0833, Gd = 1, Kd = 1, and ηf/k = 10−2. The

porosity, or fluid volume fraction, is ϕ= 0.3, and the internal friction angle is φ= 30◦.

Figure 8 shows the results of the 2D simulation with an ultra-high resolution of N = 10,2392 grid cells. The finite thickness

of the shear bands confirms that the simulation is mesh-independent. The zoomed-in panels reveal extremely detailed features400

of the strain localization pattern.

5.3 3D Results: Ultra-High Resolution Simulations

We present 3D results showcasing the spontaneous formation of shear bands under pure shear deformation, initiated by a

spherical pressure anomaly (Figure 9). These 3D simulations further validate the versatility of the APT approach (Figure 10),

demonstrating its robustness in predicting poro-elastoplastic deformation and capturing brittle failure.405

21

https://doi.org/10.5194/gmd-2024-160
Preprint. Discussion started: 10 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 8. 2D simulation results: snapshots of total pressure. Panel (a) shows the full model, while panels (b) and (c) present zoomed-in views

of the full model. The resolution is N = 10,2392 grid cells.

22

https://doi.org/10.5194/gmd-2024-160
Preprint. Discussion started: 10 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 9. Geometry of the 3D simulation domain: a spherical pressure anomaly is located at the center. Panel (a) corresponds to 3D view,

panel (b) corresponds to a slice in YZ-plane). The resolution is N = 5123 grid cells.

The boundary conditions are defined by compression along the x-axis, a slight (1%) compression along the y-axis, and

extension along the z-axis. The model is initialized with pre-stresses of τ̄xx =−0.0098, τ̄yy =−9.8×10−05, and τ̄zz = 0.0098,

while the shear stress components τ̄xy , τ̄xz , and τ̄yz are set to zero. The fluid pressure pf is zero, cohesion c is 0.0101, and the

ratio ηf/k is set at 100. The total pressure in the background material is p̄= 0, with a spherical anomaly located at the center of

the model where the pressure is increased to p̄= 0.005. The radius of this anomaly is 1/8 of the domain size. The poroelastic410

properties of the background material are: α= 0.2958,B = 0.0833,Gd = 1,Kd = 1, and ηf/k = 102. The porosity is ϕ= 0.3,

the internal friction angle is φ= 30◦. The simulation is conducted over 15 loading increments.
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Figure 10. 3D simulation results: snapshots of total pressure. Panel (a) shows the 3D view of total pressure. Panel (b) shows the YZ-slice of

the full 3D model.
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6 Discussion

6.1 Incompressible equations: a connection with the work by Räss et al. (2022)

Räss et al. (2022) performed a comprehensive analysis of the APT method for various problems. However, the work by Räss415

et al. (2022) was restricted mainly to single-phase media and to incompressible equations. We here provide connections of the

present work to the analysis presented by Räss et al. (2022).

In the present paper we deal with compressible elastic, viscoelastic or poroelastic equations. As a result, the only numerical

parameter that has to be identified is the Strouhal number, St, which is expressed as

St =
fLx

Ṽp

=
Lx

Ṽp ∆t
, (69)420

where f is the frequency. However, in the incompressible scenario (K→+∞), an additional numerical parameter shows up:

r = K̃/G̃ (which is the compressible case is defined as r = K̃/G̃≡K/G). Räss et al. (2022) discovered that for some specfic

tasks, the value of r should also be explored as well as the optimal value of St (or, equivalently, Re in their notation). As a

result, Räss et al. (2022) reported the optimal values of pairs — r and Re for each set of equations. A connection between the

“numerical" Reynolds number Re (Räss et al., 2022) and the Strouhal number St is provided below.425

For the incompressible viscous Stokes equation, Räss et al. (2022) defines the “numerical" Reynolds number, Re, as

Re =
ρ̃V S

p Lx

µs
, (70)

where V S
p is the characteristic velocity scale for the incompressible Stokes equations

V S
p =

√
K̃ + 2G̃

ρ̃
. (71)

and µs is the shear viscosity. Quantities K̃, G̃ and ρ̃ are the numerical parameters. Note that in the case of incompressible430

viscoelastic Stokes equations, the quantity µs is replaced by µve:

µve =
(

1
G∆t

+
1
µs

)−1

. (72)

As a result, for the incompressible viscoelastic Stokes equations, the “numerical" Reynolds number, Re, is defined as

Re =
ρ̃V S

p Lx

µve
, (73)

In the present paper, from the equation (28) for viscoelastic media, we can infer the Strouhal number:435

St =
ρ̃ ṼpLx

H̃ve
(74)

and H̃ve is defined as

Hve =
(

1
H∆t

+
1
µs

)
. (75)
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Note, that the full similarity between the definitions of Re (equation (73)) and Strouhal number (equation (74)). Indeed,

µve ≡Hve if we neglect the physical bulk modulusK (we keep only the shear modulusG), V S
p is the characteristic “numerical"440

velocity which has the same meaning as Ṽp for a specific problem. Therefore, all the results presented by Räss et al. (2022) for

incompressible equations can be extrapolated for compressible ones by using the results of the present paper.

6.2 Two- and three-dimensional simulations

As can be seen form the present study, the optimal values are similar for elastic, viscoelastic and poroelastic problems but

depend on some physical input parameters. We here report the optimal values for St considering elasticity equations. The445

results can also be applied to viscoelastic and poroelastic problems by modifying the expressions for Stopt.

Numerical tests considering elasticity equations show that the provided values for Stopt remain valid in 1D, 2D, and 3D.

However, in 2D,

St = St2D
opt ≈ 2π

√
2, (76)

and, in 3D,450

St = St3D
opt ≈ 2π

√
3. (77)

Note that in 3D, the value of St3D
opt can be higher and depends on the initial and boundary conditions, the medium’s hetero-

geneities, and the physics involved. A typical number of iterations over the pseudo-time depends on the problem size (in grid

cells), the convergence rate and the desired precision. Form our experiments, a typical 3D heterogeneous model requires from

5×nx to 20×nx (nx is the number of grid cells in x-dimension) iterations over the pseudo-time to achieve the quasi-static455

solution.

6.3 The Influence of Boundary Conditions

Figure 11 presents 2D and 3D numerical results for the elasto-plastic medium (for the formulation, see Alkhimenkov et al.

(2024b)). The numerical outcomes are analyzed as a function of the stability parameter St.

In the 2D simulation (Figure 11a), the total number of iterations over the pseudo-time is 3000, with a grid resolution of460

N = 5112 cells. The results indicate that the optimal value of St is St = 2π
√

2, which is typically valid for homogeneous

media and appears to be approximately valid here as well, despite the slight heterogeneity of the elasto-plastic medium. This

suggests that the presence of plasticity, which introduces significant non-linearity, does not notably affect the choice of optimal

convergence parameters in this specific 2D case.

In the 3D simulations (Figures 11b-c), the total number of iterations over the pseudo-time is 1500, with a grid resolution of465

N = 1913 cells. For the simulation depicted in Figure 11b, pure shear boundary conditions are applied along the x- and y-axes.

In contrast, the simulation in Figure 11c uses the same model parameters but with slightly modified boundary conditions: 100%

extension along the x-axis and 50% compression along the y- and z-axes. The results reveal that the optimal value of Stopt is
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Figure 11. Numerical results in 2D (panel a) and 3D (panels b and c): convergence in a heterogeneous elasto-plastic medium as a function

of St. The parameter ϵerr corresponds to the error magnitude of the APT scheme. Simulations in panels (b) and (c) are identical except for

the different partitioning of pure shear boundary conditions.

highly sensitive to the boundary conditions used. The optimal values of Stopt discussed in the previous section are accurate

only for homogeneous media and specific initial and boundary conditions.470

6.4 General Applicability: Influence of Initial and Boundary Conditions, Non-linearities, and Coupling

This study demonstrates that in homogeneous media with specific initial and boundary conditions, the optimal values of key

numerical parameters, such as Stopt, can be accurately predicted across 1D, 2D, and 3D domains. This accuracy holds partic-

ularly true in the context of coupled systems of equations, as exemplified by the poroelastic models presented here. However,

when dealing with more complex and realistic scenarios, special considerations are required to maintain this accuracy.475

Our numerical experiments highlight that factors such as initial and boundary conditions, medium heterogeneities, and the

presence of coupling and non-linearities (e.g., plasticity) can significantly influence the optimal values of numerical parameters.

For instance, while in homogeneous and idealized conditions, the choice of Stopt may remain relatively stable, introducing

heterogeneities or non-linear behavior, such as plasticity, necessitates a reassessment of these parameters. The study of strain

localization in both 2D and 3D models has shown that the presence of plasticity, which introduces strong non-linearities, can480

alter the convergence characteristics, although in some cases, the optimal parameters remain surprisingly robust.

Furthermore, the sensitivity of Stopt to boundary conditions was particularly evident in the 3D simulations, where even

minor adjustments to the boundary conditions led to changes in the optimal parameter values. This suggests that while our

approach can provide a strong starting point for selecting numerical parameters, the specific conditions of each problem must

be carefully considered. In practical applications, where media may be heterogeneous, and boundary conditions complex,485

this study provides a framework for estimating Stopt and other numerical parameters. However, to ensure the accuracy and

efficiency of simulations, it is recommended to conduct additional test simulations. These tests are necessary to fine-tune the
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parameters based on the specific characteristics of the model, such as the degree of heterogeneity, the type of non-linearities

involved, and the nature of the coupling between different physical processes.

7 Conclusions490

In this study, we conducted a rigorous analysis of the Accelerated Pseudo-Transient (APT) method for solving elastic, vis-

coelastic, and coupled hydro-mechanical problems, particularly those governed by Biot’s poroelastic equations across 1D, 2D,

and 3D domains. We identified and reported the optimal numerical parameters required to achieve rapid convergence for elas-

tic, viscoelastic, and poroelastic problems. By systematically exploring these parameters across different spatial dimensions,

we provided valuable insights into the applicability and efficiency of the APT method for a wide range of physical models.495

Our study highlighted the effectiveness of the APT method in handling complex coupled systems and demonstrated its

robustness across various types of media, including both homogeneous and heterogeneous conditions. By comparing our

numerical results against analytical solutions for elastic equations, we validated the accuracy and reliability of the APT method

in both homogeneous and heterogeneous settings.

We investigated the influence of initial and boundary conditions, non-linearities, and coupling on the optimal numerical500

parameters, emphasizing the importance of adaptability in real-world applications. Our findings suggest that while the APT

method offers a robust framework for selecting numerical parameters, additional refinement is often necessary when dealing

with heterogeneous media and complex boundary conditions. This adaptability is crucial for extending the applicability of

the APT method to more realistic and challenging scenarios encountered in geomechanics and other fields involving coupled

hydro-mechanical processes.505

To illustrate the flexibility of the APT method, we addressed the nonlinear mechanical problem of strain localization in both

2D and 3D contexts using a poro-elasto-viscoplastic rheological model. We employed extremely high resolutions - 10,0002

voxels in 2D and 5123 voxels in 3D - which, to the best of our knowledge, have not been explored before for poro-elasto-

viscoplastic rheology. This model is grounded in a hypoelastic-based constitutive framework that accommodates the simulation

of large strains.510

Importantly, the results presented in this paper are fully reproducible. To facilitate further research and verification, we have

made available Matlab, symbolic Maple scripts, and CUDA C codes in a permanent repository.

Code availability. The software developed and used in the scope of this study is licensed under MIT License. The latest versions of the

code is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.13553494 (last access: 30 August 2024)

(Alkhimenkov and Podladchikov, 2024). The repository contains code examples and can be readily used to reproduce the figures of the515

paper. The codes are written using the Matlab, Maple and CUDA C programming languages. Refer to the repositories’ README for

additional information
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Appendix A: Quasi-static elasticity equations

Let us decompose the stress tenor into pressure and deviatoric stress tensor:

σxx =−p+ τxx. (A1)520

Now, the system of equations (4) can be rewritten as





∂p

∂t
=−K∂vx

∂x

∂τxx

∂t
= 2G

(
∂vx

∂x
− 1

3
∂vx

∂x

)

0 =
∂(−p+ τxx)

∂x
.

(A2)

The quasi-static elasticity equations (A2) can then be re-written with the pseudo-time t̃,





1

K̃

∂p

∂t̃
+

1
K

p− p̂
∆t

=−∂vx

∂x

1

2G̃

∂τxx

∂t̃
+

1
2G

τxx− τ̂xx

∆t
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)

ρ̃
∂vx

∂t̃
=−∂σxx

∂x
,

(A3)

where p̂ is the pressure field at the previous physical time step and and τ̂xx in the deviatoric stress at the previous physical time525

step.

The system of equations (A3) can be simplified:





1

K̃

∂p

∂t̃
+

1
K

p

∆t
=−∂vx

∂x

1

2G̃

∂τxx

∂t̃
+

1
2G

τxx

∆t
=
(
∂vx

∂x
− 1

3
∂vx

∂x

)

ρ̃
∂vx

∂t̃
=−∂(−p+ τxx)

∂x
.

(A4)

H̃ = K̃ + 4
3 G̃=K + 4

3G, K̃ =K and G̃=G. The optimal value of St is the same as for the system (7) (or (8)):

St = Stopt = 2π, (A5)530
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which corresponds to the fastest attenuation of propagating waves. The stress tenor in decomposed into pressure and deviatoric

stress tensor, therefore, the following expressions are also provided

G̃∆t̃= (Ṽp ∆t̃)2
(

∆t̃
ρ̃

)−1(
KG +

4
3

)−1

, (A6)

where KG =K/G, and

K̃∆t̃=KG G̃∆t̃. (A7)535

Appendix B: Discretization: quasi-static elasticity equations

Let us write the discrete form of the system (8). We use a classical conservative staggered space-time grid discretization

(Virieux, 1986) which is equivalent to a finite volume approach (Dormy and Tarantola, 1995). More details on the present

discretization can be found in Alkhimenkov et al. (2021b, a). Let us consider a physical domain Lx that is discretized into grid

cells such that Lx = nx ∆x. The physical time t is also discretized as ∆t (∆t̃ is the pseudo-time). The resulting discrete form540

of the system (8) is




1

H̃

[σxx]l+1/2
i − [σxx]l−1/2

i

∆t̃
+

1
H

[σxx]l+1/2
i

∆t
=

[vx]li+1/2− [vx]li−1/2

∆x

ρ̃
[vx]l+1

i+1/2− [vx]li+1/2

∆t̃
=

[σxx]l+1/2
i+1 − [σxx]l+1/2

i

∆x
.

(B1)

The discrete form of the system (A3) can be written as





1

K̃

p
l+1/2
i − pl−1/2

i

∆t̃
+

1
K

p
l+1/2
i − p̂l+1/2

i

∆t
=−

[vx]li+1/2− [vx]li−1/2

∆x

1

2G̃

[τxx]l+1/2
i − [τxx]l−1/2

i

∆t̃
+

1
2G

[τxx]l+1/2
i − [τ̂xx]l+1/2

i

∆t
= ...

=

(
[vx]li+1/2− [vx]li−1/2

∆x
− 1

3

[vx]li+1/2− [vx]li−1/2

∆x

)

ρ̃
[vx]l+1

i+1/2− [vx]li+1/2

∆t̃
=− (−(pl+1/2

i+1 − pl+1/2
i ) + [τxx]l+1/2

i+1 − [τxx]l+1/2
i )

∆x
,

(B2)
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Appendix C: Matlab code545

Listing 1. MATLAB Code for time loop computations
1: clear, figure(1), clf
2: %physics
3: Lx = 1;
4: w = pi;550
5: u0 = 1;
6: G0 = 1;
7: K0 = 1*G0;
8: %numerics
9: nx = 401;555

10: nt = 1e6;
11: K_G = 1;
12: G = 1;
13: K = 1*G;
14: CFL = 1/1.001;560
15: %preprocessing
16: dx = Lx/(nx-1);
17: x = 0:dx:Lx;
18: for ipar = 1:25
19: par = 1+ipar/3;565
20: St = par;
21: dt = 1;
22: Vpdt = dx*CFL;
23: H = (K0+4/3*G0).*dt;
24: dt_rho = Vpdt.*Lx./St./H;570
25: Hdt = Vpdt^2./dt_rho/1;
26: Hr = Hdt./(H);
27: % initial
28: V = u0*sin(w*x/Lx);
29: sigma = 1*diff(V);575
30:
31: for it = 1:nt
32: sigma = (sigma + Hdt.*(diff(V)/dx ))./(1 + Hr);
33: V(2:end-1) = V(2:end-1) + dt_rho*diff(sigma)/dx;
34: if it == 1, mfun = max(abs(V)) + max(abs(sigma)); end580
35: if (max(abs(V)) + max(abs(sigma))) < 1e-9*mfun,break;end
36: end
37: iters1(ipar) = it; ipars1(ipar) = par;
38: Maximum = iters1/nx; [find, find2] = min(Maximum(:)) ;
39: end585
40: Reopt_num = ipars1(find2);
41: omega = 1; iparmax = 25;
42: for ipar = 1:iparmax
43: par = 1+ipar/3 ;
44: St = par;590
45: rho = St^2*H^2/((1*K+4/3*G)*Lx^2);
46: dt = dx/sqrt((1*K+4/3*G)/rho);
47: Vs = sqrt((1*K+4/3*G)/rho); fun = 1;
48: for it = 1:nt
49: fun_old=fun;595
50: a1 = pi^2*St*omega^2;
51: a2= pi^2 + 1*St^2 ;
52: a3= 2*St ;
53: a4= 1;
54: A = [a1 a2 a3 a4];600
55: Pol2 = roots( flip(A)); lambda = max(real(Pol2));
56: fun = exp( lambda(1)*Vs*it*dt ./Lx ) ;
57: if it == 1, mfun = max(abs( exp( lambda(1)*Vs*it*dt./Lx ) )); end
58: err = fun - fun_old; merr = max(abs(fun));
59: if merr*6 < 1.0 *1e-9*mfun,break,end605
60: end
61: iters(ipar) = it;
62: end
63: figure(1);clf
64: plot(ipars1,iters1/nx,'-x','LineWidth',1 )610
65: hold on; plot( 1+(1:iparmax)/3 ,iters/nx, 'o','MarkerSize',10,'LineWidth',1.5); hold on;
66: Re_opt = 2*pi;
67: plot( [Re_opt Re_opt],[5 15],'LineWidth',3);hold on
68: plot( [Reopt_num Reopt_num],[5 15],'LineWidth',3); hold on
69: xlabel( '$ {\mathrm{St}}$ (-)','Interpreter','latex' );615
70: ylabel( '$ {n}_\textrm{iter}/n_x$ (-)','Interpreter','latex' );
71: legend('Numerical solution','Analytical solution',...
72: '$ {\mathrm{St}}_\textrm{opt} = 2 \pi $ ',...
73: '${\mathrm{St}} - \textrm{numerical}$', 'Interpreter','latex');
74: grid on; drawnow620

31

https://doi.org/10.5194/gmd-2024-160
Preprint. Discussion started: 10 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Appendix D: Discretization: viscoelasticity

The discrete form of the system (27) can be written as

1

K̃

p
l+1/2
i − p

l−1/2
i

∆t̃
+

1

K

p
l+1/2
i

∆t
=−

[vx]li+1/2− [vx]li−1/2

∆x

1

2G̃

[τxx]
l+1/2
i − [τxx]

l−1/2
i

∆t̃
+

1

2G

[τxx]
l+1/2
i − [τ̂xx]

l+1/2
i

∆t
+

[τxx]
l+1/2
i

2µs
= ...

=

(
[vx]li+1/2− [vx]li−1/2

∆x
− 1

3

[vx]li+1/2− [vx]li−1/2

∆x

)

ρ̃
[vx]l+1

i+1/2− [vx]li+1/2

∆t̃
=− (−(p

l+1/2
i+1 − p

l+1/2
i )+ [τxx]

l+1/2
i+1 − [τxx]

l+1/2
i )

∆x
.

(D1)

Appendix E: Discretization: quasi-static Biot’s poroelastic equations625

The discrete form of the system (44)-(46) can be written as
1

K̃1

[p̄]
l+1/2
i − [p̄]

l−1/2
i

∆t̃
+

1

Ku

[p̄]l+1/2
i − [ ˆ̄p]

l+1/2
i

∆t
=−

[vx]li+1/2− [vx]li−1/2

∆x
−B

[qD
x ]li+1/2− [qD

x ]li−1/2

∆x

1

K̃2

[pf ]
l+1/2
i − [pf ]

l−1/2
i

∆t̃
+

1

Ku

[pf ]l+1/2
i − [p̂f ]

l+1/2
i

∆t
=−B

[vx]li+1/2− [vx]li−1/2

∆x
− B

α

[qD
x ]li+1/2− [qD

x ]li−1/2

∆x

, (E1)

 1

2G̃

[τxx]
l+1/2
i − [τxx]

l−1/2
i

∆t̃
+

1

2Gu

[τxx]
l+1/2
i

∆t
=

(
[vx]li+1/2− [vx]li−1/2

∆x
− 1

3

[vx]li+1/2− [vx]li−1/2

∆x

)
, (E2)


ρ̃t

[vx]l+1
i+1/2− [vx]li+1/2

∆t̃
=− (−([p̄]

l+1/2
i+1 − [p̄]

l+1/2
i )+ [τxx]

l+1/2
i+1 − [τxx]

l+1/2
i )

∆x

ρ̃a

[qD
x ]l+1

i+1/2− [qD
x ]li+1/2

∆t̃
=−[qD

x ]li+1/2−
k

ηf
([pf ]

l+1/2
i+1 − [pf ]

l+1/2
i )

∆x

. (E3)
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